Given a set of connectivity graphs \(\{W_s\} \) with positive weights \(w_{ij} > 0 \), Graph Laplacian (positive semi-definite matrix) and Regularized Graph Laplacian (symmetric positive definite matrix, SPD) can be computed as follows:

\[
L_s = D_s - W_s
\]

\[
D_s = \text{diag}\left(\sum_j w_{ij} \right)
\]

\[
\hat{L}_s = L_s + \gamma I
\]

\(\gamma > 0 \)

Euclidean distance between SPD matrices is suboptimal. It is better to consider the Geodesic Distance on the Riemannian manifold.

1- Symmetric Positive Definite Graph Representation

- **Affine Invariant Metric:**
 \[
d_{af}(\hat{L}_1, \hat{L}_2) = \| \text{log}(\hat{L}_1^{\frac{1}{2}} \hat{L}_2^{\frac{1}{2}}) \|_F
\]

- **Log Euclidean Distance** [1]
 \[
d_{\text{log}E}(\hat{L}_1, \hat{L}_2) = \| \log(\hat{L}_1) - \log(\hat{L}_2) \|_F
\]

- **Stein Divergence** [2]
 \[
d_{\text{stein}}(\hat{L}_1, \hat{L}_2) = \left(\log \det \left(\frac{\hat{L}_1 + \hat{L}_2}{2} \right) - \frac{\log \det(\hat{L}_1 \hat{L}_2)}{2} \right)^{1/2}
\]

- **Log Euclidean Gaussian Kernel (GK-LogE)**
 \[
 K_{\text{log}E}(i, j) = \exp \left(-\frac{d_{\text{log}E}(\hat{L}_i, \hat{L}_j)^2}{\sigma^2} \right)
 \]

- **Stein Gaussian Kernel (GK-Stein)**
 \[
 K_{\text{stein}}(i, j) = \exp(-\beta d_{\text{stein}}(\hat{L}_i, \hat{L}_j))
 \]

- **Log Euclidean Linear Kernel (LK-LogE)**
 \[
 K = (d_{\text{log}E})^T \times d_{\text{log}E}
 \]

2- Riemannian Manifold of SPD Matrices

Alternative Metrics on the Manifold Computationally Faster

- **Log Euclidean Distance** [1]
 \[
d_{\text{log}E}(\hat{L}_1, \hat{L}_2) = \| \log(\hat{L}_1) - \log(\hat{L}_2) \|_F
\]

Riemannian Metric, Geodesic Distance, Easy to Kernelize

Stein Divergence [2]

Not a Riemannian Metric, based on convex structure of manifold

3- Riemannian Kernel

Positive definite with

\[
\beta \in \left\{ \frac{1}{2}, \frac{3}{2}, \ldots, \frac{n-1}{2} \right\} \cup \left\{ \tau \in \mathbb{R} : \tau > \frac{n-1}{2} \right\}
\]

4- Results

Leave-One-Out with Riemannian-Kernel SVM

Parameters fitted with Cross-Validation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Riemannian-Kernel SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autism</td>
<td>Autism</td>
</tr>
<tr>
<td>DTI</td>
<td>68.00 %</td>
</tr>
<tr>
<td>LK-LogE</td>
<td>59.27 %</td>
</tr>
<tr>
<td>LK-Stein</td>
<td>54.26 %</td>
</tr>
<tr>
<td>L-SVM</td>
<td>55.32 %</td>
</tr>
<tr>
<td>Euclidean</td>
<td>G-SVM</td>
</tr>
<tr>
<td>G-SVM</td>
<td>68.00 %</td>
</tr>
<tr>
<td>L-SVM</td>
<td>59.27 %</td>
</tr>
<tr>
<td>GK-LogE</td>
<td>54.26 %</td>
</tr>
<tr>
<td>GK-Stein</td>
<td>54.26 %</td>
</tr>
</tbody>
</table>

Higher performances on Riemannian manifold vs. Euclidean space

Best results with LogE distance (Geodesic) compared to Stein divergence

LogE and Stein (for certain \(\beta \)) define valid Gaussian kernels

LogE and Stein are faster to compute than Affine Invariant Metric

Results independent of \(\gamma \)

References

1. V. Arsigny et al., *Fast and simple calculus on tensors in the Log-Euclidean framework*, MICCAI, 2009